Yiddish of Day

"A moshel it = 5'k 880 km 16
nisht keyn raych = 5'k 880 km 16

"An example is not a proof

Subspaces

Last time

Recall that for
$$X \subseteq F'$$
 we defined

For $(X, F) = \text{functions } f(X) = F(X)$

Cts $(X, F) = \text{cts functions } f(X) = F(X)$

Of $(X, F) = \text{diff functions } f(X) = F(X)$

These are all subsets, but they have more structure, They are themselves rectuspaces Vetilet V be a IF-vs, WEV subset. We say Wis a Subspace it 1) Ore W 2) if wi, wiew the within EW

3) toelf, well one W

it will often be usefull to greak apout
the vector space V into <u>Smallet decomposition of</u> subspaces.
(we will return to this item)
· Common occurance of subspaces
· Defi. Let V be an IF-us and (v. Vx)
· Def: Let V be an IF-us and (v. Vx) in V. Then we say well is a linear-combo

of this victus if W=CIVI+ + + CRVR for some CI - CR &F chewhan Det: Let "S = V be a subset of V. The Span of S is the set (S) = Spun(S) = S & Civ; | Cigif vie S = all possible linear combo's of vectors in S. Lemma: Spain (S) is a subspace of V

PA) Q'. Is Ou & Span(S). Yes, take any seS.
5, 5, with the state of the sta
Thun U+W= C, S, +- + (1 Se + Olis) + 1018 & - pare
Similarly ave Spuncs) Vaef
HW: Show Sour (5) is the smallest subspace containing 5
· We often pay particular attention to how
a vicator is a linear-combo ot
a list of vectors.

Det: Say a	list of	vutus ar	linearly independent
if the on	ly way Or	is a LL of	these vectors, is
is all	the coefficient	s on Of	
Why cure?	Uniqueness	Claims	
HW: Suppose			pendent
Thur any			
,	Unique ex	J	

Pot the 2 notions together and get -Oct: A basis of an IF-us V is a set B = V (matheal 2 3) Such thut 1) V=5pan(3) 2) Bis linearly independent

ex);) V2 If the standard busis

ex);) be, ex, ex (e:= (i)=im) ii) S= [x,- xn] V= Fol (S, IF) Have the Kronecker-della" basis 3= (Si-Sn) delined as S: $S \rightarrow IF$ S: $(x_i) = S \rightarrow i=j$ Try to pun ths! (take get try $g = c_i S_i + \cdots + c_n S_n$)

W: Flt Jen hus "standard busis" 3 = (1, E, E) t (00), (00) in) Mare (IF) has "standard basis" (M., Me, My)= (10)(01) Propilet 13 be set in V. Thus 3 is a basis (=) every weV (an be expressed! as a linear-comb of values in B

How to get Basis. Lumma! Let S= (v. - vn) subset, we V. Let S= (V, _ Vn, w) Then i) Spun (S): Spun (S) <=> WE Spun (S) ii) If S is LI, then so is 3 <=> w& Spen(S) Pt) (i) Assume Spun (S)= Spun (S). Note we Spun(5) = Spun(S) J Now w= Civit: +(nvn for Cieff Lie we Span(S))

Take Ye Span(S). Then Yod, v,t. +dava+dw
Now play in expression for w=>8=divit-+duvited (Livit-+ Chin)
=> 8= (d,+dc,) V,+ + (dn+dcn) Vn & Spun(S) []
Since $S \leq \widetilde{S}$ Spun(S) \subseteq Spun(S) \subseteq Spun(S) \subseteq Spun(S) \subseteq Spun(S) \subseteq Spun(S)
(-1) v = (-v) (ii) Assume, S is also LI. It we Spun (5)
comes from w= C,V,+ + + C,N, with not all c; =0
Comes from then w= C(V,t-+CnVn. with not all c; =0 OFV=OV Then O=C(V,t-+CnVn. with not all c; =0
yd 5 is LI -> ~
Now assume we spunces hold that I not LI
Than A C Ch, ch eft not all Of Sull Must
On a Civit- I (avat olw. It ol= 0 this would controlled
S ke LI, => W= - 14-Ct V2

This will help us construct basis let: Say Vis Finite-Dimensional if there is a finite subset that span (S) ex) i) F" ii) Maxa (F) iii) If (t) Ln iv) S finite set, Fet (S, IF)

HW: V) Show that V: Fet (Z/ IF) not fink-dimensions) vi) IF GED not finite dimensional Prop: Let S= (v. v.) be set that spans V a) Grun La linearly-migrature subset of V, we obtain a basis for V by activity elements of S to L 6) Obtain a basis for V by

excluding elimins in S. Cit needed) Pf) b) If Sis LI nothing to do I Assum Snot LI JV: E Span (v. - V:-1, Viti, ..., Vn) Call 5 = (V~ V~, V;+1, -, , Vn) Note Span (S) = span (S) by last lemma.

If S is now LI we're done. If not, repeat.

Eventually this must terminate. "spans" = Spanll 13 V a) If L spans I nothing to do If L doesn't spun than I vies such that V; & Span(L), Because, if S = Span(L) than Span(S) = Span(L) but span(S) = V ->=

	Consider L^2 (L, v ;) this remains LI by lemma above. Now miniot the above to finish the proof.	
Cor: Every	fol vector spuce hus a busis.	
RmK: Hur	for ginnel VS, hunder to prove. Uses	
" 2 0	orns lumma	

Towards Dimension

Prop. S. L	finite subsets in V.	
Assmi	1) S Spans	
	i) Lis Linearly-incl	
4		
Ihu	151 2 11	

Pt) Take S=(v,-, vn) Spunning, Take L= (w. , wm) LI. Now since S spans, autiling any victus markes the new loss LD. Adjoin w. from L to get the loss - (W, V, - V,), Consider the following lemma. If Z. Zr are Linearly dependent than Fjest. K3 (notice the indices) 2: e Spun (2. ., 2;-1) Pf) Since Z. Zx an LD 3 a axelf not all zero, such that

aitit-	+ artr 20,	in grank 3	
Let j	be the largest 1	ndex such that	a; ‡0.
Thun	V = - 9, v - 9, - 9;	Vi aj	¥1 €
Back to the pro	of.		
. Since Cw.	non one of the	LD V: and still	Span
	d and action u		(12 temore)
By the S	lemma about onc	of these vector	WS

must be in spun of the previous vectors.
Since W., We are put of LI list we
Know W. & Spun (W.), So] y jejl-13-, nj
st vie span (Wi, Wi, Vi, Vi) by provious
lemma, Again remove that vector,
Continu for each Step. At step K we have a LD
(W. Wa some v's with K of them removed)
Keep going and at each step the lumma alow implies
(w. We some v's with k of them removed) Keep going and at each step the lumma about implies the list is LD, so that there is some v to
remore.

This means there are at least as many v's
as thur wir w's (ugly proof i)
Cor: V fl VS and B a basis. Thus
Exercise a) Any other busis B' has the sum H of values as B
1) It S is finite subset spanning V then 15/2/18)
() II L is finite LI set then IBI 2 1L1

=> Def. The dimension of a finite dm US Vis defined to be the # of vectors in a busis I time lineal transformations